Top 5 Strategies to Future-Proof Analytics, Data Science, and ML Investments

When COVID-19 struck in early 2020, everyone’s data science and ML models broke. The pandemic fundamentally changed the nature of work and accelerated activities to become data driven.

Wow, times have certainly changed! 

But some things have remained the same.

In the world of analytics, data science, and machine learning (ML), technology rapidly evolves, but some foundational principles remain steadfast. From advances in automated data prep, cleansing, and profiling to automated machine learning (AutoML) and automated feature engineering, there are certainly many innovative capabilities to consider when evaluating DSML platforms.    

However, when making analytics and AI investments, business leaders need to look beyond the technology. The technology changes, but some of the core principles to future-proof your strategy remain the same. After all, if you’ve been in the tech market for any amount of time, you’ve probably witnessed tech trends rise and fall. Additionally, you’ve probably seen your share of analytic projects fail and those that have become wildly successful. Why are some projects successful while others seemingly never make it out of the gate?  

When making analytics and AI investments, business leaders need to look beyond the technology. 

According to a survey by NVP Big Data and AI Executive Survey 2021, 92.2% of companies “identify culture — people, process, organization, change management — as the biggest impediment to becoming data-driven organizations.”

These results are not anomalous. Year after year, culture continues to stall aspirations of becoming analytic driven. However, some companies have found the magic elixir for transforming their culture from one based on intuition and outdated processes to a digital-first environment fueled by analytics, data science, and ML. The magic happens through five strategies that leaders use to future-proof their investments.

For the companies that can transform, the results can be impressive. According to the International Institute for Analytics (IIA), when comparing companies with different levels of analytics maturity (i.e., localized analytics vs. analytic companies), they found the following differences in financial growth: 

Five year growth comparison chart

 

As a data and analytics leader, you should consider the following recommendations to future-proof your analytics and data science strategy.

 

1. Align Analytics & Data Science with Business Strategy

Yes, this sounds a bit cliché, but one of the biggest causes of failed projects stems from a misalignment between analytics and data science professionals, different functional areas within the company, and the overall business strategy.

Organizations need to have a well-defined business strategy with business goals and OKRs (Objectives and Key Results). Then, you need to define a set of initiatives (projects) that map to those OKRs. Next, you need to create and map KPIs (Key Performance Indicators) to those initiatives. Then, and only then, should organizations establish analytics projects to achieve those key initiatives.

 

2. Start with the Digital Decision and Work Backwards

After the key initiatives and project teams are formed, organizations need to work backwards from the key business decisions that need to be made. Leaders need to pay close attention to the associated business processes that are impacted. The entire goal of data and analytic projects is to create value for the company. If the organization can’t change its behavior as a result of infusing analytics into a digital decision, what’s the point? In far too many cases, this is overlooked and is detrimental to projects and demoralizing to those working on the project.

Assuming the organization can take prescriptive action based on analytics, businesses need to embark on infusing analytic workflows into business systems. To effectively do this, they need to have a robust organization change management process in place as well as an ML Ops strategy

 

3. Don’t Forget the People

People are an organization’s most important asset, and there are many dimensions to discuss. First, there continues to be shortage of qualified data scientists for businesses to hire and retain. Thankfully, this gap is quickly closing thanks to upskilling opportunities like the ADAPT program.

Many large organizations are looking to continue to leverage their existing workforce by making them more data literate and providing them with the training opportunities they need to become citizen data scientists. Whether you like the term citizen data scientist or not, there are many professionals that are using data and analytics today that are stuck in spreadsheet land — doing the same thing over and over.

Also, an analytic-driven organization is only as strong as the community that supports it. When looking at analytics technology, pay close attention to the robustness of the community. Does it provide a collaborative experience for employees to learn best practices and solve problems without the help of IT or expensive training programs? 

 

4. Don’t Do it Again, Automate.

Related to #3, automation is critically important for organizations. In the history of the world, as systems and processes become more complex, they need to be automated. Let’s face it, knowledge workers today are fed up with outdated work processes. They abhor doing the same thing over and over. They yearn to use their skills to do innovative things like moving beyond generating descriptive “what happened” reports every week to creating drag-and-drop data science models and exploring “what could happen” and “what should we do next.”

Many organizations see automation as a critical competency. From robotic process automation, to chat bots, to low/no-code user interfaces, to AI and ML, if you have to do something more than once, there’s an opportunity to automate the process. Analytic Process Automation is certainly one piece of the digital transformation puzzle that can help businesses let their employees create breakthrough moments and solve problems in new and innovative ways.

 

5. Technology Considerations

As previously stated, technology is certainly an enabler to improve employee wellbeing and business performance, but it should be considered after the previous recommendations are understood. First and foremost, technology needs to be intuitive, approachable, and easy-to-use. Yes, I know, every technology vendor states that their tech is easy to use, which is why I encourage people to try before they buy.

Additionally, the technology should have a robust set of building blocks to build data and analytics pipelines that solve real business problems and lead to top- and bottom-line growth.

The technology should have automation embedded with it and a robust partner network who can help with your digital transformation. Lastly, it should have some AutoML capabilities that are backed by open-source projects like EvalML (this YouTube video is for the Pythonistas who may be reading this blog).

An Airline’s Analytics Take Off

As an example, let’s take a quick look at an airline’s marketing team. This team was transitioning from utilizing a full-service marketing agency to doing more of it in house. By using an intuitive, easy-to-use analytics platform, they were able to analyze marketing emails, and truly understand their customers’ needs. After some A/B testing and copy reduction in their email campaigns, they were able to achieve 50% more clicks and a 15% increase in conversions.

But the success didn’t stop there. Since they had a platform that was scalable and could grow with them as they learned more, they were able to add geospatial analytics to their analysis which got them 10% more interaction. They had over a dozen workflows that were automated which freed up their time to pursue more innovative work. They also added predictive capabilities and were able to identify a marketing segment that was 3x more likely to convert. In all, their conversions were 20% higher! 

Summary

Technology is only one component of the proverbial three-legged stool of people, process, and technology. As business leaders embark on their analytics journey, having a clear understanding of business strategy and how it maps to an organization’s digital decisions are important. It’s critical to understand how the business process will change.

Next, involve your entire organization in the various projects and initiatives. Make sure your employees have a clear upskilling path; after all, they know your business best and can make significant improvements if only given the chance.

Then – automate. Automate. Automate. Lastly, consider a technology platform that is easy-to-use, flexible, and one that has hundreds of building blocks that can be used to create innovative workflows. The technology should be backed by a robust community.

Read This Next.

Wondering what a DSML platform can do for you? 

Read More