motif blanc

Data Wrangling

motif blanc
Content

What Is Data Wrangling?

Organizations deal with large amounts of raw data and preparing it for analysis can be timely and costly. Wrangling alleviates that burden by transforming, cleansing, and enriching data to make it more applicable, consumable, and useful. Unlike data pre-processing or preparation, wrangling happens throughout the analysis and model-building stages of the data analytics process.

Wrangling improves the quality of the data being analyzed, which means rather than waste time and resources dealing with the consequences of bad data, organizations can create accurate, meaningful analyses that allow for better solutions, decisions, and outcomes.

How Data Wrangling Works

Data Wrangling Process

Data wrangling follows five major steps: Explore, transform, cleanse, enrich, and store.

Explore: Data exploration or discovery is a way to identify patterns, trends, and missing or incomplete information in a dataset. The bulk of exploration happens before creating reports, data visualizations, or training models, but it’s common to uncover surprises and insights in a dataset during analysis too.
explore


Transform: Transforming or structuring data is important; if not done early on, it can compromise the rest of the wrangling process. Data transformation involves putting the data in the right shape and format that will be useful for a report, data visualization, or analytic or modeling process. It may involve creating new variables (aka features) and performing mathematical functions on the data.
data-wrangling-transform


Cleanse: Data often contains errors as a result of manual entry, incomplete data, data automatically collected from sensors, or even malfunctioning equipment. Data cleansing corrects those entry errors, removes duplicates and outliers (if appropriate), eliminates missing data, and imputes missing values based on statistical or conditional modeling to improve data quality.
data-wrangling-cleanse


Enrich: Enrichment or blending makes a dataset more useful by integrating additional sources such as authoritative third-party census, firmographic, or demographic data. The enrichment process may also help uncover additional insights from the data within an organization or spark new ideas for capturing and storing additional customer information in the future. This is an opportunity to think strategically about what additional data might contribute to a report, model, or business process.
data-wrangling-enrich


Store: The last part of the wrangling process is to store or preserve the final product, along with all the steps and transformations that took place so it can be audited, understood, and repeated in the future.
data-wrangling-store

The Future of Data Wrangling

Data wrangling used to be handled by developers and IT experts with extensive knowledge of database administration and fluency in SQL, R, and Python. Analytic Process Automation (APA) has changed that, getting rid of cumbersome spreadsheets and making it easy for data scientists, data analysts, and IT experts alike to wrangle and analyze complex data.

Getting Started With Data Wrangling

The Alteryx APA Platform™ uses a graphical interface, so it’s easy to document, share, and scale critical data wrangling work in a way that’s auditable and repeatable. No-code, low-code modes allow users to either drag-and-drop or tackle one line of programming at a time. Users can also save their work in formats similar to a spreadsheet file or as part of a larger data model to a shared platform.

Data wrangling tools are built into every step of the Alteryx APA Platform with:
  • Transformation tools, including Arrange, Summarize, and Transpose
  • Preparation and cleansing tools, such as Formula, Filter, and Cleanse
  • Data enrichment tools, including Location Insights, Business Insights, and Behavior Analysis
Voiture de course McLaren
Témoignage client
Temps de lecture : 5 minutes

McLaren Racing mise sur l'analytique des données pour booster ses résultats

Avec plus de 20 week-ends de course de Formule 1 prévus, chacun générant 1,5 To de données, il est vraiment essentiel de pouvoir collecter, traiter et exploiter ces données. L'équipe McLaren Racing s'appuie sur la plateforme Alteryx d'Automatisation des processus analytiques pour accélérer la prise de décision stratégique, tant sur le circuit qu'en dehors.

Chaîne d'approvisionnement
Responsable Analytique
BI/Analytique/Data science
Lire maintenant
	5 cas d'usage pour aider les professionnels de la FP&A à gagner du temps Time_dynamic_432x767
E-book
Temps de lecture : 7 minutes

5 cas d'usage pour aider les professionnels de la FP&A à gagner du temps

Les processus FP&A manuels vous énervent et vous prennent tout votre temps ? Découvrez dans cet e-book cinq processus FP&A à rationaliser pour gagner du temps, améliorer les prévisions et prendre de meilleures décisions.

Finance
Planification et analyse financières
Lire maintenant
Personne montant des escaliers
Blog
Temps de lecture : 5 minutes

CFOs-Step-Up-As-AI-Leaders

Les directeurs financiers qui s'approprient vraiment l'IA rendent service à leur entreprise, et à leur carrière.

Finance
Responsable Business
Alteryx Platform
Lisez vite !

Data Blending Starter Kit

Jumpstart your path to mastering data blending and automating repetitive workflow processes that blend data from diverse data sources.

image