hero background shape

Data Science and Data Analytics Glossary

hero background gradient
All
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z

Advanced analytics uses sophisticated techniques to uncover insights, identify patterns, predict outcomes, and generate advanced recommendations.

...


Read More

Can agentic AI deliver decisions that are faster, more adaptive, and more resilient than traditional automation?

...


Read More

Learn what agentic workflows are, how they work, and how they combine automation, analytics, and AI agents to streamline decision-making and business processes.

...


Read More

Discover how AI analytics transforms data into actionable insights. Boost decision-making and stay competitive in today’s business landscape.

...


Read More

Explore clear definitions of AI governance terms. This glossary helps readers understand responsible AI, ethics, and compliance concepts.

...


Read More

Learn what an AI tech stack is and how its layered set of technology components form an ecosystem that enables organizations to operationalize AI at scale.

...


Read More

Learn how AI-ready data boosts ROI by enabling faster insights, smarter decisions, and more reliable outcomes.

...


Read More

Explore the meaning of analytics, why it matters, and how data-driven insights power smarter strategies, better decisions, and measurable business value.

...


Read More

Discover how analytics automation streamlines data tasks, boosts insights, and drives smarter decisions with less manual effort.

...


Read More

Learn what an analytics maturity model is and how assessing data and analytics capabilities boosts performance, efficiency, and business outcomes.

...


Read More

Artificial Intelligence (AI) is when computers perform tasks that usually need human thinking, like spotting patterns, making predictions, or automating decisions. Companies use AI to save time, work smarter, and make faster, better choices across many industries.

...


Read More

Artificial intelligence for IT operations (AIOps) is a predictive, proactive technology approach that integrates data analytics, automation, and AI across complex IT environments. It improves how IT systems are monitored, managed, and optimized by applying machine learning (ML) and advanced analy ...


Read More

Automated machine learning, or AutoML, makes ML accessible to non-experts by enabling them to build, validate, iterate, and explore ML models through an automated experience.

...


Read More

Bias in AI refers to systematic errors in algorithms or datasets that result in unfair, inaccurate, or unbalanced outcomes. It happens when AI systems reflect or amplify the biases found in their training data, design, or deployment environments.

...


Read More

Business analytics is the process of using data to identify patterns, evaluate performance, and guide better business decisions. It combines statistical analysis, data visualization, and predictive modeling to turn raw information into actionable insights.

...


Read More

Business intelligence is the cumulative outcome of an organization’s data, software, infrastructure, business processes, and human intuition that delivers actionable insights.

...


Read More

Cloud analytics involves both using data stored in the cloud for analytic processes and leveraging the fast computing power of the cloud for faster analytics.

...


Read More

Learn what cloud data integration is, how it works, and how organizations use it to connect, transform, and manage data across hybrid and multi-cloud environments.

...


Read More

Learn what cloud data management is, how it works, and how organizations across industries apply it to break down data silos and bolster analytics.

...


Read More

Learn how cloud data platforms boost ROI by streamlining data management, enhancing scalability, and supporting AI-driven insights.

...


Read More

A cloud data warehouse is a database that is managed as a service and delivered by a third party, such as Google Cloud Platform (GCP), Amazon Web Services (AWS), or Microsoft Azure. Cloud data architectures are distinct from on-premise data architectures, where organizations manage their own phys ...


Read More

Customer journey analytics (CJA) is the process of analyzing customer interactions across every channel and touchpoint to reveal patterns, behaviors, and opportunities to improve customer experience. By combining data from marketing, sales, service, and digital systems, organizations can see wher ...


Read More

Learn what data aggregation is and how combining and summarizing data from multiple sources helps businesses improve analytics accuracy and reporting.

...


Read More

Explore the power of data analytics to uncover patterns, drive smarter choices, and create lasting business impact.

...


Read More

Data applications are applications built on top of databases that solve a niche data problem and, by means of a visual interface, allow for multiple queries at the same time to explore and interact with that data. Data applications do not require coding knowledge in order to procure or understand ...


Read More

Data blending is the act of bringing data together from a wide variety of sources into one useful dataset to perform deeper, more complex analyses.

...


Read More

A data catalog is a comprehensive collection of an organization’s data assets, which are compiled to make it easier for professionals across the organization to locate the data they need. Just as book catalogs help users quickly locate books in libraries, data catalogs help users quickly search ...


Read More

Data cleansing, also known as data cleaning or scrubbing, identifies and fixes errors, duplicates, and irrelevant data from a raw dataset.

...


Read More

Data compliance ensures your organization meets all legal, regulatory, and industry requirements for collecting, storing, processing, and protecting personal and sensitive data while maintaining business operations.

...


Read More

A data connector is a software component or integration tool that enables different systems, applications, or databases to exchange data seamlessly. It acts as a bridge between sources like CRMs, cloud storage, APIs, or analytics platforms and allows data to flow automatically without manual expo ...


Read More

Data democratization is about removing barriers so that everyone — not just IT or data scientists — can access, understand, and act on data. Organizations pursue it to speed decisions, increase agility, and create a culture where insights fuel every function. In practice, democratizing data m ...


Read More

Data enrichment is a data management process that augments existing data sets by adding relevant information from internal or external sources to make them more robust, accurate, and valuable. It goes beyond simple data collection to add context, attributes, and meaning that help organizations be ...


Read More

Data exploration is one of the initial steps in the analysis process that is used to begin exploring and determining what patterns and trends are found in the dataset. An analyst will usually begin data exploration by using data visualization techniques and other tools to describe the characteris ...


Read More

Learn what data extraction is and how automating data collection from multiple sources improves accuracy, saves time, and powers better analytics.

...


Read More

Data governance is the set of rules, processes, and responsibilities that ensure an organization’s data is accurate, secure, usable, and compliant. It provides the guardrails that let organizations protect their data while enabling teams to use it confidently for decision-making.

...


Read More

Data ingestion is the process of collecting data from its source(s) and moving it to a target environment where it can be accessed, used, or analyzed.

...


Read More

Data integrity refers to the accuracy and consistency of data over its entire lifecycle, as well as compliance with necessary permissioning constraints and other security measures. In short, it is the trustworthiness of your data.

...


Read More

A data lakehouse is a data management architecture that seeks to combine the strengths of data lakes with the strengths of data warehouses.

 

...


Read More

Track where an organization’s data comes from, the journey it takes through the system, and keep business data compliant and accurate.

...


Read More

A data mesh is a new approach to designing data architectures. It takes a decentralized approach to data storage and management, having individual business domains retain ownership over their datasets rather than flowing all of an organization’s data into a centrally owned data lake. Data is ac ...


Read More

Discover how data modeling structures information for clarity, consistency, and better decision-making across your organization.

...


Read More

Data munging is the process of manual data cleansing prior to analysis. It is a time consuming process that often gets in the way of extracting true value and potential from data. In many organizations, 80% of the time spent on data analytics is allocated to data munging, where IT manually cleans ...


Read More

Data observability refers to the ability of an organization to monitor, track, and make recommendations about what’s happening inside their data systems in order to maintain system health and reduce downtime. Its objective is to ensure that data pipelines are productive and can continue running ...


Read More

Data onboarding is the process of preparing and uploading customer data into an online environment. It allows organizations to bring customer records gathered through offline means into online systems, such as CRMs. Data onboarding requires significant data cleansing to correct for errors and for ...


Read More

A data pipeline is a sequence of steps that collect, process, and move data between sources for storage, analytics, machine learning, or other uses. For example, data pipelines are often used to send data from applications to storage ...


Read More

Data preparation, also sometimes called “pre-processing,” is the act of cleaning and consolidating raw data prior to using it for business analysis and machine learning.

...


Read More

Data profiling helps discover, understand, and organize data by identifying its characteristics and assessing its quality.

...


Read More

Learn what data quality is, why it matters for analytics and AI, and how organizations assess, improve, and maintain the reliability of their information.

...


Read More

Data science is a form of applied statistics that incorporates elements of computer science and mathematics to extract insight from both quantitative and qualitative data.

...


Read More

Data science and machine learning are buzzwords in the technology world. Both enhance AI operations across the business and industry spectrum. But which is best?

...


Read More

Data security protects sensitive information through policies, technologies, and controls that prevent breaches and misuse. It also helps organizations cut risk, build trust, and stay compliant with regulations like GDPR and HIPAA.

...


Read More

A data source is the digital or physical location where data originates from or is stored, which influences how it is stored per its location (e.g. data table or data object) and its connectivity properties.

...


Read More

Data standardization abstracts away all the complex semantics of how data is captured, standardized, and cobbled together to provide businesses with faster and more accurate analytics.

...


Read More

A data steward is the professional responsible for ensuring that an organization’s data assets are accurate, consistent, secure, and aligned with established governance policies. Their work bridges business needs and technical delivery, helping teams trust and effectively use enterprise data.
Read More

Learn what data structure is and how organizing and storing data efficiently boosts analytics performance, data integrity, and faster business decisions.

...


Read More

Data transformation is the process of converting data into a different format that is more useful to an organization. It is used to standardize data between data sets, or to make data more useful for analysis and machine learning. The most common data transformations involve converting raw data i ...


Read More

Data validation is the process of ensuring that your data is accurate and clean. Data validation is critical at every point of a data project’s life—from application development to file transfer to data wrangling—in order to ensure correctness. Without data validation from inception to iter ...


Read More

Data visualization is the visual representation of data by using graphs, charts, plots or information graphics.

...


Read More

Learn what data wrangling is and how cleaning, structuring, and enriching data from multiple sources improves analytics accuracy and business insight.

...


Read More

Decision intelligence is the process of applying analytics, AI and automation to decisions that impact< ...


Read More

Demand forecasts estimate future demand for products and services, which helps inform business decisions. Demand forecasts include granular data, historical sales data, questionnaires, and more.

...


Read More

Descriptive analytics answers the question “What happened?” by drawing conclusions from large, raw datasets. The findings are then visualized into accessible line graphs, tables, pie and bar charts, and generated narratives.

...


Read More

Learn what dirty data really is, how it happens, and most importantly — how to prevent it so your organization can operate at top speed with agility.

...


Read More

Embedded analytics is the integration of data analysis and data visualization capabilities directly into existing business applications, systems, or workflows. Instead of switching among platforms to access insights, users can view and interact with analytics within the tools they already use — ...


Read More

An ETL Developer is an IT specialist who designs, develops, automates, and supports complex applications to extract, transform, and load data. An ETL Developer plays an important role in determining the data storage needs of their organization.

...


Read More

Explainable AI (XAI) refers to techniques and methods that make the decision-making processes of AI systems understandable to humans. Its goal is to reveal how models arrive at outputs so that users, regulators, and organizations can trust, verify, and govern those decisions.

...


Read More

Extract, transform, load (ETL) is a core data integration process that enables organizations to collect data from multiple sources, clean and organize it, and load it into a central data storage location, such as a data warehouse or data lake, for analysis. ETL ensures that data is accurate, cons ...


Read More

With feature engineering, organizations can make sense of their data and turn it into something beneficial.

...


Read More

Generative AI (GenAI) helps organizations quickly turn data into useful outputs like reports, insights, or even workflow suggestions. By learning from existing data, it reduces manual effort and makes advanced analytics more accessible.

...


Read More

Learn what a large language model is and how it supports B2B teams with AI-powered insights and applications.

...


Read More

Machine learning is a branch of artificial intelligence that enables computers to identify patterns, make predictions, and improve performance without being explicitly programmed. It helps organizations uncover insights, automate complex tasks, and support faster, more accurate decision-making.
Read More

Master Data Management (MDM) is the practice of creating a trusted, consolidated view of an organization’s critical data — such as customers, products, suppliers, and employees — across systems and teams. It provides the structure and governance needed so that core data is accurate, consist ...


Read More

Machine learning models (MLOps) provide valuable insights to the business, but only if those models can access and analyze the organization’s data on an ongoing basis. MLOps is the critical process that makes this possible.

...


Read More

Objectives and key results (OKRs) are a goal-setting framework that helps organizations define clear, measurable outcomes and track progress toward strategic priorities. In analytics and data-driven organizations, OKRs align teams around specific business outcomes, turning data insights into focu ...


Read More

Predictive AI uses historical and real-time data, machine learning models, and statistical techniques to forecast future outcomes and support data-driven decision-making.

...


Read More

Predictive analytics is a type of data analysis that uses statistics, data science, machine learning, and other techniques to predict what will happen in the future.

...


Read More

Discover how prescriptive analytics helps businesses optimize strategy, predict outcomes, and take data-driven action for growth.

...


Read More

Understand what quantitative data means and how it fuels smarter business strategies through measurable insights.

...


Read More

A regex (short for regular expression) is a sequence of characters used to specify a search pattern. It allows users to easily conduct searches matching very specific criteria, saving large amounts of time for those who regularly work with text or analyze large volumes of data. An example of a re ...


Read More

Learn how Retrieval Augmented Generation (RAG) boosts AI accuracy by blending search and generation for smarter, faster results.

...


Read More

Sales analytics is the practice of generating insights from data and used to set goals, metrics, and a larger strategy.

...


Read More

Self-service analytics are a modern approach to business intelligence that allows non-technical users to independently access, analyze, and visualize data without relying on IT or data specialists. By democratizing data and automating access through governed analytics tools, it enables faster, da ...


Read More

Source-to-Target Mapping is a set of data transformation instructions that determine how to convert the structure and content of data in the source system to the structure and content needed in the target system.

...


Read More

Spatial analysis models problems geographically, allowing a company to analyze the locations, relationships, attributes, and proximities in geospatial data to answer questions and develop insights.

...


Read More

Spatial analytics helps organizations understand their data in relation to physical location. Instead of looking only at what is happening, spatial analytics adds the context of where it’s happening — revealing geographic patterns and relationships that lead to smarter, faster business decisi ...


Read More

Supervised and unsupervised learning have one key difference. Supervised learning uses labeled datasets, whereas unsupervised learning uses unlabeled datasets.

...


Read More

Systems of intelligence help organizations extract value from their tech stack by creating a highly accessible single source of data-driven insights from their systems of record to support strategic decision-making.

...


Read More

A User Defined Function (UDF) is a custom programming function that allows users to reuse processes without having to rewrite code. For example, a complex calculation can be programmed using SQL and stored as a UDF. When this calculation needs to be used in the future on a different set of data, ...


Read More